If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+13X=33
We move all terms to the left:
X^2+13X-(33)=0
a = 1; b = 13; c = -33;
Δ = b2-4ac
Δ = 132-4·1·(-33)
Δ = 301
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-\sqrt{301}}{2*1}=\frac{-13-\sqrt{301}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+\sqrt{301}}{2*1}=\frac{-13+\sqrt{301}}{2} $
| 3y2–9y+7=0 | | r2+6r+9=0 | | 9p2+p+5=0 | | 9y+32=7y | | -2/8(4y+3)-4/16(-3y-6)=-3/4 | | y=3.51 | | y=3.50 | | y=3.5-1 | | y=3.5-3 | | 18/36=n/6 | | X+25=5+6x | | 2/3x•3/4=12/3x | | 3x-5=2x=14 | | 2/3x×3/4=12/3x | | 3+5x-6=2x-3-13x | | 3x-0.32x=12.72 | | x^2+24=26 | | 3x-7=-18x+8 | | 2w/3+w=1/2(7+w)-14 | | (10x+5)=(13x-7) | | 1/4a +1/3a + 8 = 22 | | 60=8x^+157x | | 5x+6x+7x=27000 | | Y=3(2)-2x | | 118+(14x-50)=180 | | 3.x+4=21 | | (5^1/5)^5=25^x | | (51/5)^5=25^x | | 114+(10x+16)=180 | | 24x+14=56 | | 86+(10x+16)=180 | | _2/3x=5=20-x |